Roof Rafter Length

Determining Roof Rafter Length

Conversion Factors for Roof Rafters

Slope (IN 12)	Slope Factor	Slope (IN 12)	Slope Factor
3	1.031	12	1.474
4	1.054	13	1.514
5	1.083	14	1.537
6	1.118	15	1.601
7	1.158	16	1.667
8	1.202	17	1.734
9	1.25	18	1.803
10	1.302	19	1.873
11	1.357	20	1.944

To convert "Rafter Span" to "Sloping Distance":

1. Select slope factor for given slope in table.
2. Multiply Horizontal Span by "Slope Factor".

Example:

If slope is 4 in 12 and rafter span is $12^{\prime}-6^{\prime \prime}$, then sloping distance $=12.5 \times 1.054=13.175^{\prime}$ or $13^{\prime} 2^{\prime \prime}$.
(Note: the over-all rafter length depends on the length of the overhang.)

Cutting a Rafter Birdsmouth

1. Determine the rafter length using table above: Ex: Run $=20^{\prime}$, slope $=4$. Rafter Length $=21^{\prime}-1^{\prime \prime}$ using table above.
2. Measure \varnothing (from Table 1) at top edge of rafter.
3. Draw the building line.
4. Draw $2 / 3$ width line from top edge of rafter.
5. Use square to draw seat cut line from bottom edge of rafter to intersect building line.

Note: the birdsmouth notch should be limited to $1 / 3$ the rafter width to maintain $2 / 3$ of the rafter section.

Table 1

Slope	$\mathbf{3}$	4	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\boldsymbol{0}^{\circ}$	14	18	23	27	30	34	37	40	43	45
p°	76	72	67	63	60	56	53	50	47	45

Layout lines for a common rafter

Graphical examples of finished birdsmouth cuts for 12/12, 8/12 and 3/12 roof pitches.

Publisher is not liable for errors or omissions in this book. Always check your local building codes.

